www.wonjinmetal.com

비이지기 원진금속(주)

Copper Alloy Billet Copper Alloy Ingot

Copper Alloy Tube Copper Alloy Bar

Sprinkler

Wonjin Metal is aiming for the best quality. We are striving to produce high quality products with constant quality control.

SYMBIOSIS COEXISTENCE

CEO Greetings

Wonjin Metal commenced as Daewoo Metal Co., Ltd. Wonjin Metal was established in April 2012. Wonjin has built its ground base supplying kitchen/bathroom metal products to domestic and overseas companies. In 2016, we relocated our head office and expand business becoming a brass manufacturer.

In November 2016, Wonjin Metal Incheon Branch, a brass processing business, was launched. Also we launched Wonjin stec, a manufacturer of fire extinguishing apparatus and gas valve distributor, in July 2017.

Wonjin Metal was a brass product seller at first, but now it has become the one and only Korean specialized company for brass goods ranging from first stage of material processing to third stage of finished goods.

Please look forward to Wonjin Metal which will develop through continuous research and development.

Thank you.

Lee Si-Yeon, CEO of Wonjin Metal クレ メレ の

Company History

04	Establishment of Wonjin Metal
04 11 11 12 12	Relocation of head office to Sangbongam Ind Wonjin Incheon Branch Accepted Certificate for Hygiene and Safety St Approval of Stack Emission Business Grade 3 Certification of Women's Business
02 04 05 07 07 07	Received KS Certification of Incheon Branch – Certification of Root Business Approval of emission of 5 kinds of wastewater Certification of Specialized Company for Mate Establishment of Wonjin stec Certification of Venture Company Certification of ISO 9001, ISO 14001
	04 11 12 12 02 04 04 05 07 07

07 Established Company Institute

Business Introduction

Head Office : Head office of Wonjin Metal in Sangbongam-dong in Dongducheon city conducts strand casting, casting, drawing and extruding of brass materials to manufacture primary brass products and zinc die casting processed goods.

Branch : Wonjin Metal Incheon Branch conducts second and third processing of primary products from the head office and produce finished goods such as faucets or valves.

Wonjin Stec : Wonjin stec in Sangpae-dong, Dongducheon city conducts special processing of brass products, fire extinguishing materials and valve distributors.

이이기(원진금속(주)

dustrial Complex in Dongducheon-si

Standards from KC-Certification Number KCW-2012-0582

- Certification No. 08-0306, 0152

er erials and Parts

Copper Alloy Billet

Primary brass products manufactured by fusion of brass scraps in furnace and horizontal continuous casting method.

Ingredient composition is available to adjust for customers' needs; mainly produced in composition ratio for alloy bars (C3604, C3771) or alloy circular pipes (C2600, C2700).

Production Picture

Process of Billet Manufacture

Materials » Fusion » Horizontal casting » Billet » Cutting and separating casts » Test » Release

Production Specifications

90Ø ~ 200Ø

Copper Alloy Ingot

Copper Alloy Ingot

Primary brass products manufactured by melting brass scraps in furnace, putting in casts and solidifying

Process of Ingot Manufacture

Production Specifications Materials » Fusion » Casting » Cutting and separating casts » Test » Release

Ingot type 1- Grade A, B and C

	Copper Alloy Ingot for Casting type 1 : CACIn201/KSD6024									
	CHEMICAL COMPOSITION (%)									
Composition	Cu	Pb	Fe	Sn	Ni	Al	Mn	Zn		
Standard	83.0~88.0	0.5↓	0.2↓	0.1↓	0.2↓	0.2↓	-	REM		

Ingot type 2- Grade A, B and C

	Copper Alloy Ingot for Casting type 2: CACIn202/KSD6024									
CHEMICAL COMPOSITION (%)										
Composition	Cu	Pb	Fe	Sn	Ni	Al	Mn	Zn		
Standard	65.0~70.0	0.5~3.0	0.6↓	1.0↓	1.0↓	0.5↓	-	REM		

Ingot type 3- Grade A, B and C

	Copper Alloy Ingot for Casting type 3: CACIn203/KSD6024									
CHEMICAL COMPOSITION (%)										
Composition	Cu	Pb	Fe	Sn	Ni	Al	Mn	Zn		
Standard	58.0~64.0	0.5~3.0	0.6↓	1.0↓	1.0↓	0.5↓	-	REM		

Production Picture

Copper Alloy Tube

Copper Alloy Tube

Draw a billet, a primary processed goods, to make it a circular pipe. Reconduct drawing to produce brass tubes in various shapes and sizes.

Copper Alloy Tube has a fine degree of Mechano-Luminescence property and plating and drawing performances. It is lead-free and mainly utilized as a material for heat exchanger, faucet or fire extinguishing unit.

Production Picture

Manufacture Process

Production Specifications

Billet » Cutting » Heating » Extruding » Pointing » Cutting » Annealing » Test » Copper Alloy Tube

Decide after checking dies production.

	Joint	less Cop	per Alloy	Tube C2	500/KSD5	5301		
		CHEM	AICAL CON	NPOSITION	۷ (%)			
Composition	Cu	Pb	Fe	Sn	Ni	Al	Mn	Zn
Standard	68.5~71.5	0.05↓	0.02↓	-	-	-	-	REM

	Jointless Copper Alloy Tube C2700/KSD5301									
		CHE	EMICAL CO	MPOSITIO	N (%)					
Composition	Cu	Pb	Fe	Sn	Ni	Al	Mn	Zn		
Standard	63.0~67.0	0.05↓	0.05↓	-	-	-	-	REM		

Bar

Copper Alloy Bar

Process of Bar Manufacture

Manufacture alloy bars in various shapes and sizes by extruding and drawing of billet

Billet » Cutting » Heating » Extruding » Cutting » Straightening » Test » Copper Alloy Bar

Production Specifications (Bar types)

Forged Bar

	Copper Alloy Bar - Forged Bar: C3771/KSD5101									
		CHEM	AICAL COM	NPOSITION	l (%)					
Composition	Cu	Pb	Fe	Sn	Ni	Al	Mn	Zn		
Standard	57~61	1.0~2.5	0.5↓	0.5↓	-	-	-	REM		

Suitable for precision forging with high hot forge ability.
Mainly produce mechanical parts.

Free Cutting Bar

	Copper Alloy Bar - Free Cutting Bar C3604/KSD5101								
CHEMICAL COMPOSITION (%)									
Composition	Cu	Pb	Fe	Sn	Ni	Al	Mn	Zn	
Standard	57~61	1.0~2.5	0.5↓	0.5↓	-	-	-	REM	

- Mainly used to process spindles, valves or bolts due to its fine cutting performance.

Naval Bar

	Copper Alloy Bar - Naval Bar C4622/KSD5101									
	CHEMICAL COMPOSITION (%)									
Composition	Composition Cu Pb Fe Sn Ni Al Mn Zn									
Standard	61.0~64.0	0.3↓	0.2↓	0.7~1.5	-	-	-	REM		

- Mainly used to produce vessel parts or shafts due to its high degree of corrosion and seawater resistance.

Production Picture

Sprinkler Flush Type Sprinkler Head

Sprinkler facility is for automatic fire extinguishing at early stage of fire and for minimize the damage to human and property. Thus maximum Credibility even at worst situation is required. And Asia Union developed the sprinkler head to meet this requirement and to lead technical Innovation. The special features of sprinkler head manufactured by Asia Union as follows.

Optimal Sealing by O-Ring

Highly durable Teflon O-Ring was used and special coating was done at the contacting point of O-Ring to ensure perfect Sealing and secured operation at fire detecting.

Shock proof structure with steel ball support method

With 8 steel ball support structure for shock esistance, it Is reliably safe from external impact and free from damage And leakage.

Low Assembly Load

By minimizing the assembly load with o-Ring Sealing Method, safety is secured with low pressure inside the Head.

Excellent Design

As the head is installed in the building, aesthetic design By minimizing heat detecting with small head was made.

Structure

Operation Process

Our sprinkler head has unique structure with 8 stainless steel balls of 3.2mm O.D. with simple design. Therefore, our sprinkler head secured Shock-proof and leak-proof as well as small and great design with maximum safety.

- lowered pressure.
- the structure.
- disassembles by water pressure.

- 1. PISTON 2. FUSE 3. HEAT SENSOR PLATE 4. MIDDLE HEAT SENSOR 5. UPPER HEAT SENSOR 6. INSULATION 7. BALANCER 8. BALL 9. SLIDER 10. GUIDE 11. FRAME 12. LALVE PIN 13. COIL SPRING 14. DEFLECTOR 15. VALVE 16. O-RING
- 17. BODY

1. The assembly load of the head is dispersed by 8 balls and fuse metal takes the

2. When detecting heat by fire, fuse metal gets melted and it start disassembling

And the assembly load is reduced and disassembling by spring force starts.

3. Disassembled valve by spring force is delivered to inside deflector and deflector

4. Deflector is hung at the lower end and water starts to sprinkle.

Sprinkler Flush Type Sprinkler Head

Product specification

Our Flush type sprinkler head is wholly new concept product with high quality special coating, o-Ring, 8 stainless steel balls. Leakage or malfunction in water sprinkling is not possible unless full disassembling by heat temperature and external impact. It Has our own proprietary stable design with high performance of shock resistnace.

Product No.	Temp.	Heat Sensor	Water Vol.(ℓ/min)	Sprinkling Range(m)	Direction	Color	Weight(g)
AE72-Q80C	72°c	Quick Type	80	2.6m	Down	Non	98
AE105-Q80C	105°c	Quick Type	80	2.6m	Down	Whit	98
AE72-Q50C	72°c	Quick / Living Type	50	2.6m	Down	Non	114
AE105-Q50C	105°c	Quick / Living Type	50	2.6m	Down	Whit	114
AE72-M80C	72°c	Standard Type	80	2.3m	Down	Non	97
AE105-M80C	105°c	Standard Type	80	2.3m	Down	Whit	97

Assembly installation

Sprinkler Glass Bulb Type Sprinkler Head

Glass Bulb Type Sprinkler Head

The heat sensor part of glass bulb is for internal gas and can be used For sensor head of bubble extinguisher in the parking lot and also Good for nozzle plumbing without ceiling. Our glass bulb type sprinkler Head is using the bulb made by Job, the world's biggest glass bulb Maker and secures best possible reliability for its superior function.

Specification

1. Thread : PT 1/2 2. Water Pressure Range : 1~10kgf/cm²

4. Heat Sensor : Glass Bulb

Product No.	Temp.	Heat Sensor	Water Vol. (ℓ/min)	Sprinkling Range(m)	Direction	Color	Glass Bulb Color	Weight(g)
AG68-Q80-SSP	68°c	Quick Type	80	2.6m	Down	Non	Red	51.5
AG93-Q80-SSP	93°c	Quick Type	80	2.6m	Down	White	Green	51.5
AG68-Q80-SSU	68°c	Quick Type	80	2.6m	Up	Non	Red	51.5
AG68-M80-SSU	68°c	Standard Type	80	2.3m	Up	Non	Red	51.5
AG93-M80-SSU	93°c	Standard Type	80	2.3m	Up	White	Green	51.5
AG141-Q80-SSP	141°c	Quick Type	80	2.6m	Down	Blue	Blue	51.5
AGOP-80-SSP	Oper	ning Type Head	80	2.3m	Down	Glass Bu	Ib None	50.0
AGOU-80-SSU	Oper	ning Type Head	80	2.3m	Up	Glass Bu	ılb None	50.0

AG68-M80-SSU AG93-M80-SSU AG68-Q80-SSU

3. Internal Test Water Pressure : 5 minutes at 25kgf/cm24)

AG93-M80-SSP AG68-Q80-SSP

AG68-Q80-SSH AG68-M80-SSH

ADG68-M80-SSP ADG93-M80-SSP ADG68-Q80-SSH

_ Field Work

Picture

Wonjin Metal is aiming for the best quality. We are striving to produce high quality products with constant quality control.

Picture

Facilities

Strand Casting Part

High frequency heating machines Low frequency heating machine

Low frequency heating machine

Extruding Part

Double-acting extruder Single-acting extruder

Single-acting extruder

Spectro

Drawing Part

75t drawer 25t drawer 10t drawer 7.5t drawer

Processing Part

Metal processors T shape manufacturing machine Automated lathes

75t drawer

10t drawer

	74/1				-	10	2,955
	14/18	400			Aprid	17	
***	-		-410	1843. 12	in the second se	0. 210	100
64141			- 41	61			
	**	111E 2:10					
~**	4843	96.0	eus:	140		(Care	all i
	1-16			~			
10530	111.45	FIX.45 \$100 24					1014
**		_		-1.74			
40.005		-	54.008	100			
			+4				
**							
18509 9/4 91		in:	1 154 1 16 1 1 6 4 4	4			

25t drawer

Vonjin Metal Bolak(F)

Wonjin Headquarters. 23, Pyeonghwa-ro 2862beon-gil, Dongducheon-si, Gyeonggi-do, Republic of Korea Wonjin Stec. 85-8, Samyuksa-ro 596beon-gil, Dongducheon-si, Gyeonggi-do, Republic of Korea TEL. +82-31-867-4811 / E-mail. wonjinmetalmain@naver.com